Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li Tian* and Bin Liu

College of Chemistry and Life, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: tian_lili@eyou.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.114$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

N-(2-Pyridyl)cyclopropanecarboxamide

The title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$, crystallizes with two molecules per asymmetric unit. The crystal packing is stabilized by van der Waals interactions and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions.

Comment

Cyclopropane is a structural unit which has several biological activities; for example, ciprofloxacin is an excellent bactericide. 1-Aminocyclopropane-1-carboxylic acid (ACC) is known to be the biochemical precursor of the plant hormone ethylene in a process catalysed by the ethylene-forming enzyme (EFE) (Adams et al., 1979). 2,2-Dichloro-3,3dimethylcyclopropanecarboxylic acid is an effective inducer against the rice blast fungus (Langcake et al., 1983). The main active component of cilastatin is $(+)$ - (S)-2,2-dimethylcyclopropanecarboxamide (Mu, 1992; Xu et al., 1994). Thus, it is very important to synthesize other new compounds containing cyclopropane, and study their biological activities. The action of thionyl chloride on cyclopropanecarboxylic acid, (1), at room temperature afforded cyclopropanecarbonyl chloride, (2), which when condensed with 2 -aminopyridine gave the title compound, (3). This compound was characterized by ${ }^{1} \mathrm{H}$ NMR and elemental analysis, and its crystal structure is reported here.

(1)
(2)

Received 2 July 2006
Accepted 17 August 2006

The title compound, (3), crystallizes with two molecules per asymmetric unit (Fig. 1). The dihedral angle between the N1pyridine and C7-cyclopropane rings is $77.1(1)^{\circ}$, whereas the dihedral angle between the N3-pyridine and C16-cyclo-

Figure 1
View of the asymmetric unit of (3), with displacement ellipsoids drawn at the 40% probability level.

Figure 2
The molecular packing of (3), viewed along the a axis. H atoms bonded to C atoms have been omitted for clarity.

Figure 3
View of the hydrogen bonding (dashed lines) in (3).
propane rings is $73.89(122)^{\circ}$. For the similar compound 3-[(E)-2-chloro-3,3,3-trifluoroprop-1-enyl]-2,2-dimethyl- N-(3pyridyl)cyclopropanecarboxamide acetone hemisolvate, (4) (Liu et al., 2006), the dihedral angle between the pyridine and cyclopropane rings is $73.0(3)^{\circ}$.

The crystal packing (Fig. 2) is stabilized by van der Waals interactions and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, forming infinite chains (Fig. 3 and Table 1). Whereas, in (3), the hydrogen bonding involves amide NH groups and carbonyl O atoms, in (4) the hydrogen bonding involves amide NH groups and pyridine N atoms.

Experimental

To a solution of (1) ($2 \mathrm{mmol}, 0.17 \mathrm{~g}$) in dichloromethane (10 ml) was added dropwise a solution of thionyl chloride ($8 \mathrm{mmol}, 0.6 \mathrm{ml}$) in dichloromethane $(2 \mathrm{ml})$ at room temperature. The reaction mixture was kept at this temperature for 1 h . The solution was concentrated to give cyclopropanecarbonyl chloride, (2). To a solution of 2-aminopyridine ($2 \mathrm{mmol}, 0.19 \mathrm{~g}$) in tetrahydrofuran (10 ml), was added triethylamine ($3 \mathrm{mmol}, 0.4 \mathrm{ml}$); cyclopropanecarbonyl chloride, (2), in tetrahydrofuran (5 ml) was then added dropwise at 273 K . The reaction mixture was kept at room temperature for $2-3 \mathrm{~h}$, then filtered and concentrated. The residue was separated by silica-gel chromatography (eluant petroleum ether-AcOEt 3:1) to afford the
title compound, (3). Colourless single crystals were grown from a solution of AcOEt-cyclohexane (1:4). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.37 ($d, 1 \mathrm{H}, \mathrm{H} 2$), $8.21(d, 1 \mathrm{H}, \mathrm{H} 5), 7.87(T, 1 \mathrm{H}, \mathrm{H} 3), 7.13(T, 1 \mathrm{H}, \mathrm{H} 4)$, 1.74 ($m, 1 \mathrm{H}, \mathrm{H} 7$), 1.13 ($m, 2 \mathrm{H}, \mathrm{H} 9$), 0.96 ($m, 2 \mathrm{H}, \mathrm{H} 8$). Analysis calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$: C 66.70 , H 6.19, N 17.24; found: C 66.67, H 6.17, N 17.28\%.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
$Z=16$
$M_{r}=162.19$
Orthorhombic ${ }_{2}$ Pbca
$a=9.475$ (4) \AA
$b=9.844$ (4) \AA
$c=36.821$ (15) \AA
$V=3434(2) \AA^{3}$

$$
D_{x}=1.255 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.35 \times 0.32 \times 0.28 \mathrm{~mm}$

Data collection

Bruker APEX-II CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.970, T_{\text {max }}=0.983$
17436 measured reflections 3019 independent reflections 1512 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement
Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.049 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0045(6)
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.00	$2.836(2)$	165
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {ii }}$	0.86	2.12	$2.972(2)$	172
Symmetry codes: (i) $x+\frac{1}{2}, y,-z+\frac{1}{2}$; (ii)	$x-\frac{1}{2},-y+\frac{3}{2},-z$.			

All H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$. For all H atoms, $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

LT acknowledges financial support from the Doctor's Foundation of Tianjin Normal University (No. 5RL029).

References

Adams, D. O. \& Yang, S. F. (1979). Proc. Natl Acad. Sci. 76, 170-174. Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Langcake, P., Cartwright, D. W. \& Ride, J. P. (1983). The dichlorocyclopropanes and other fungicides with indirect mode of action. In Systemische Verbindungen und antifungale Verbindungen, edited by H. Lyr \& C. Polter, pp. 199-210. Berlin: Akademie-Verlag.

organic papers

Liu, D.-Q., Feng, Y.-Q., Liu, D.-W. \& Zhang, S.-S. (2006). Acta Cryst. E62, o1747-o1748.
Mu, F. (1992). Chin. J. Pharm. 23, 42-45.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, X. L. \& Wang, H. S. (1994). Chin. J. Pharm. 25, 51-54.

